1

Déterminer la dimension d'une grandeur

Exploiter une relation physique connue faisant intervenir la grandeur physique dont on cherche la dimension. Procéder ainsi :

- par du calcul littéral, isoler la grandeur,
- puis en déduire sa dimension à l'aide de l'autre membre de la relation obtenue (connaissant la dimension des autres grandeurs intervenant).
- 1. Quelle est la dimension d'une force?
- 2. Quelle est la dimension d'une énergie?
- **3.** Soit x(t) l'abscisse d'un véhicule se déplaçant le long d'un axe Ox. Quelle est la dimension de la dérivée par rapport au temps, notée $\dot{x}(t)$?
- 1. D'après la 2nde loi de Newton, en référentiel galiléen, un corps de nouve un souvris à des forces $\vec{F_1}$, $\vec{F_2}$, ... possède une accélération à verificant:

Dac [name] [acceleration] = [force]

D'ai [force] =
$$M.L.T^{-2}$$

- 2. Four un corps de nouve un eu translation de vitere $v = ||\vec{v}||$, l'énergie cirétique est définée par: $E_c = \frac{1}{2} m v^2$
 - Danc [Ec] = $\left[\frac{1}{2}\right]$ [M] $\left[\sigma^{2}\right]$ Soctour odinerrionné $\frac{1}{2}$. M . $(L.T^{-1})^{2}$

3. On sait que
$$\dot{x}(t) = \lim_{\Delta t \to 0} \left(\frac{\chi(t+\Delta t) - \chi(t)}{\Delta t} \right)$$
 par définition de la dérivée.

Danc
$$\left[\dot{x}\right] = \left[\frac{\chi(t+\Delta t) - \chi(t)}{\Delta t}\right]$$

$$= \frac{\bot}{\top}$$

$$[x] = \bot, \top^{-1}$$

La rotation différentielle de la dérivée
$$\dot{z} = \frac{dx}{dt}$$

pervet de faciliter l'arabyse dethoumennelle:

$$\left[\frac{dx}{dt}\right] = \left[\frac{x}{t}\right] = L \cdot T^{-1}$$