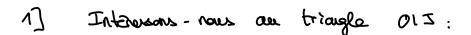
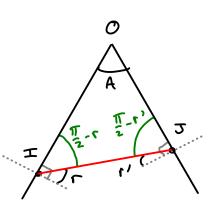
Déviation par un prisme



$$\frac{11}{2} - C + \frac{1}{2} - C^{\dagger} + A = T$$

deviation deviation eu I



direction du
$$D_{\overline{1}}$$
 $D_{\overline{1}}$ $D_{\overline{1}}$ $D_{\overline{1}}$ $D_{\overline{1}}$ $D_{\overline{1}}$ $D_{\overline{1}}$ $D_{\overline{1}}$ $D_{\overline{1}}$

direction du direction du gove royan layon êmegent

Expression de DI

On constante que

$$D_{\tau} + r = 0$$

DI+ r= i d'après la schèma

Expression de DJ

On constate de nière que :
$$D_J + r' = i'$$

$$(\Rightarrow) \quad | D_3 = i' - r'$$

$$\frac{D^{lov}}{D}: D = D_{I} + D_{J}$$

$$= i + i' - (r + r')$$

$$D = i + i' - A$$

$$D = i + i' - A$$

3) Raisonnons par l'absurde, supposens que
$$i \neq i'$$
 (*)
lersque $D = Dm$. Par exemple:

$$\mathcal{D}_{m}$$
 $\left(\frac{1}{2}\right)^{n}$ $\mathcal{D}_{m} = \mathcal{D}(1)^{n}$

Notars im la velour de i telle que D(i'm) = DmNotars i'm la velour de i' correspondante.

Alors puisque $i'_{m} \neq i_{m}$, $D(i'_{m}) \neq D_{m}$

Pourtont le principe du retour invense de la lunière appliqué au schéma à-dersus affirme le contraire

d' hypothère (\mathcal{F}) de départ est donc faverse $(D(i=i'_{m})=D_{m})$.

Ainsi, i=i' lorsque $D=D_{nu}$.

4] . D'après les lois de Snell-Descontes:

$$\int N \sin(r) = N_{\text{out}} \sin(r)$$

$$\int N \sin(r) = N_{\text{out}} \sin(r)$$

Par ailleurs, losque
$$D = D_{m}$$
, $i = i'$.
 $D = n \sin(r) = n \sin(r')$

$$\mathcal{D}\omega c: \Lambda \sin(r) = \Lambda \sin(r)$$

• De plus :
$$A = \Gamma + \Gamma^{\dagger}$$

$$= 2\Gamma$$
Danc
$$\Gamma = \frac{A}{2}$$

$$Dac$$
 $r = \frac{A}{2}$

• Et on
$$\beta n$$
: $D = (+i'-A)$

$$Dac$$
 $c = \frac{A+D_m}{2}$

$$n \sin \left(\frac{A}{2}\right) = \sin \left(\frac{A + Pm}{2}\right)$$
 (ower $n_{ar} = 1$)

(
$$\alpha = 1$$

en déduire une mesure de n.